Search results

Search for "photoelectrochemical water splitting" in Full Text gives 9 result(s) in Beilstein Journal of Nanotechnology.

Photoelectrochemical water oxidation over TiO2 nanotubes modified with MoS2 and g-C3N4

  • Phuong Hoang Nguyen,
  • Thi Minh Cao,
  • Tho Truong Nguyen,
  • Hien Duy Tong and
  • Viet Van Pham

Beilstein J. Nanotechnol. 2022, 13, 1541–1550, doi:10.3762/bjnano.13.127

Graphical Abstract
  • . The stability of the MoS2/TNAs heterojunction is higher than that of g-C3N4/TNAs. Keywords: band structure; g-C3N4/TiO2; MoS2/TiO2; photoelectrochemical; water splitting; Introduction Hydrogen energy has become a target pursued in the energy development strategies of many countries and regions
PDF
Album
Supp Info
Full Research Paper
Published 16 Dec 2022

A TiO2@MWCNTs nanocomposite photoanode for solar-driven water splitting

  • Anh Quynh Huu Le,
  • Ngoc Nhu Thi Nguyen,
  • Hai Duy Tran,
  • Van-Huy Nguyen and
  • Le-Hai Tran

Beilstein J. Nanotechnol. 2022, 13, 1520–1530, doi:10.3762/bjnano.13.125

Graphical Abstract
  • -603103, Tamil Nadu, India 10.3762/bjnano.13.125 Abstract A TiO2@MWCNTs (multi-wall carbon nanotubes) nanocomposite photoanode is prepared for photoelectrochemical water splitting in this study. The physical and photoelectrochemical properties of the photoanode are characterized using field emission
  • . The average STH conversion efficiency of the TiO2@MWCNTs electrode under solar exposure from 6 AM to 5 PM is 11.1%, 8.88 times higher than that of a TiO2 electrode. The findings suggested TiO2@MWCNTs is a feasible nanomaterial to fabricate the photoanode using photoelectrochemical water splitting
  • photocatalytic, photoelectrochemical, and photovoltaic–photoelectrochemical systems. The features and the operating mechanism of photoelectrochemical water splitting are detailed in [10][11]. Photoelectrochemical water splitting has attracted much research interest because it has some outstanding advantages. The
PDF
Album
Full Research Paper
Published 14 Dec 2022

Zinc oxide nanostructures for fluorescence and Raman signal enhancement: a review

  • Ioana Marica,
  • Fran Nekvapil,
  • Maria Ștefan,
  • Cosmin Farcău and
  • Alexandra Falamaș

Beilstein J. Nanotechnol. 2022, 13, 472–490, doi:10.3762/bjnano.13.40

Graphical Abstract
  • combined with metal nanoparticles, resulting in enhanced photoactivity of Au-decorated ZnO nanocrystals for photoelectrochemical water splitting [9], improved photodetection performance of ZnO nanofibers decorated with Au NPs [10], or enhanced photocatalytic activity of ZnO doped with Au NPs [11]. Moreover
PDF
Album
Review
Published 27 May 2022

Cr(VI) remediation from aqueous environment through modified-TiO2-mediated photocatalytic reduction

  • Rashmi Acharya,
  • Brundabana Naik and
  • Kulamani Parida

Beilstein J. Nanotechnol. 2018, 9, 1448–1470, doi:10.3762/bjnano.9.137

Graphical Abstract
  • friendly manner [26][27][28][29]. This process involves: (i) generation of renewable energy such as H2 and O2 by photoelectrochemical water splitting [30][31][32], (ii) photocatalytic CO2 conversion [33][34][35][36][37], (iii) photocatalytic nitrogen (N2) fixation [38], (iv) selective organic
  • (electrons (eCB−) and holes (hVB+)) must be effectively separated before they can carry out appropriate redox reactions at the semiconductor surface. Photoelectrochemical water splitting Hydrogen (H2) is considered as a sustainable, clean and renewable energy source to provide a solution to the global energy
PDF
Album
Review
Published 16 May 2018

Enhanced photoelectrochemical water splitting performance using morphology-controlled BiVO4 with W doping

  • Xin Zhao and
  • Zhong Chen

Beilstein J. Nanotechnol. 2017, 8, 2640–2647, doi:10.3762/bjnano.8.264

Graphical Abstract
  • % increase). Keywords: bismuth vanadate; charge separation; nanostructure; photoelectrochemical water splitting; Introduction Solar hydrogen generation is one of the most promising approaches to create clean energy and to overcome the environmental problems associated with use of conventional fossil fuels
  • electrode as a reference electrode. The light source for photoelectrochemical water splitting measurement is a solar simulator (HAL-320, Asahi Spectra Co., Ltd.) with a power intensity of 100 mW·cm−2. The photocurrent was measured in a 0.5 M Na2SO4 aqueous solution with a scan rate of 30 mV·s−1. The
PDF
Album
Supp Info
Full Research Paper
Published 07 Dec 2017

Two-dimensional carbon-based nanocomposites for photocatalytic energy generation and environmental remediation applications

  • Suneel Kumar,
  • Ashish Kumar,
  • Ashish Bahuguna,
  • Vipul Sharma and
  • Venkata Krishnan

Beilstein J. Nanotechnol. 2017, 8, 1571–1600, doi:10.3762/bjnano.8.159

Graphical Abstract
PDF
Album
Review
Published 03 Aug 2017

Surfactant-controlled composition and crystal structure of manganese(II) sulfide nanocrystals prepared by solvothermal synthesis

  • Elena Capetti,
  • Anna M. Ferretti,
  • Vladimiro Dal Santo and
  • Alessandro Ponti

Beilstein J. Nanotechnol. 2015, 6, 2319–2329, doi:10.3762/bjnano.6.238

Graphical Abstract
  • electrodes for photoelectrochemical water splitting), Regione Lombardia in the framework of the Second Agreement with CNR (RSPPTECH project), and the Italian MIUR under grant FIRB RBAP115AYN (Oxides at the nanoscale: multifunctionality and applications).
PDF
Album
Supp Info
Full Research Paper
Published 07 Dec 2015

Nanostructure sensitization of transition metal oxides for visible-light photocatalysis

  • Hongjun Chen and
  • Lianzhou Wang

Beilstein J. Nanotechnol. 2014, 5, 696–710, doi:10.3762/bjnano.5.82

Graphical Abstract
  • [59][60][61][62][63], photocatalytic water splitting [64][65] photoelectrochemical water splitting [66][67][68][69][70][71][72], photocatalytic conversion of CO2 with H2O to hydrocarbon fuels [73], and degradation of organic molecules [74]. In 2004, Tatsuma et al. reported that nanoporous TiO2 films
  • dipole–dipole interaction between the gold core and the Cu2O semiconductor shell. Plasmonic metal nanostructures have been incorporated into different transition metal oxides to enhance the solar-light harvesting and the energy-conversion efficiency for the photoelectrochemical water splitting. For
  • carbon nanodot–TiO2 nanotube [130], carbon nanodot–SrTiO3 film [131], carbon nanodot–TiO2 nanoparticle [114], and carbon nanodot–ZnO nanorod arrays [132], exhibited a good performance for photoelectrochemical water splitting or photocatalytic activity in dye degradation under visible light irradiation
PDF
Album
Review
Published 23 May 2014

A visible-light-driven composite photocatalyst of TiO2 nanotube arrays and graphene quantum dots

  • Donald K. L. Chan,
  • Po Ling Cheung and
  • Jimmy C. Yu

Beilstein J. Nanotechnol. 2014, 5, 689–695, doi:10.3762/bjnano.5.81

Graphical Abstract
  • photoelectrochemical water splitting [38]. In the present work, a composite photocatalyst of graphene quantum dots and TiO2 nanotube arrays (GQDs/TNAs) was fabricated by the coupling reaction between carboxyl-containing GQDs and amine-functionalized TNAs (Scheme 1). The experimental data revealed that sensitization of
PDF
Album
Supp Info
Full Research Paper
Published 22 May 2014
Other Beilstein-Institut Open Science Activities